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A method is given for solving the problem about the contact of a thin plate in 
the form of an infinite strip lying on an elastic frictionless half-space in a thcee- 
dimensional formulation. This method reduces the problem to the solution of an 
infinite system of algebraic equations with a completely continuous form. 

The corresponding plane problem has been examined by a number of authors 
[l - 61. The results obtained in [3 - 61 should be considecd most complete. This 

same problem for a linearly deformable base of general type was examined in 

[7 - 91. 

1, The problem of bending of a plate lying on an elastic frictionless half-space ce- 
duces to the following system of equations: 

q$+$ ) ’ w (2, y) = g (T Y) -r (x9 ~4) (1.1) 

Here D is the cylindrical stiffness of the plate, w (z, y) is the deflection, g (z, y) 
is the vertical load, r (E, q) is the reaction of the foundation, and S is the contact domain. 

To solve this system , it is important to be able to solve the second equation in (1.1). 
the fundamental integral equation of the contact problem of a stamp in the shape of the 

contact domain s under the condition that the surface of the stamp base is curved ac- 
cording to the law z = w (5, y). In general, the function zu (2, y) is unknown, hence 
a general (or at least sufficiently general) solution of the mentioned contact problem 
must be able to be found. The general solution of the contact problem for a strip stamp, 
obtained in [lo], will be used to solve the problem on the bending of a plate in theshape 
of a strip of width 2. 

Let us assume that a load represented in the form 

g (5, y) = F-l [g* (5, VI, g* (G V = F [g (3, Y)I 

acts on the plate, where F [u] and F-l [u] ace the direct and inverse Fourier tcans- 
forms. We apply the Fourier transform to the functions w (3, I/> and r (2, y) . Then 
the system (1.1) will be satisfied under the condition that {w* (5, h), r* (z, h)} is 
the solution of the following system of equations: 

D (-g -hay w* (z, h) - g* (5, h) + r* (z, A) = 0 (1.2) 

1 
1 - va - nE s r* (5, A) cl (A I z - E I) d5 = w* NV v (I r I d 1) 

-1 
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The solution of the last equation is [lo] 

Fekk (0. - q) 

‘rm Fek, (0, - q) cem (qy - q, 
(1.3) 

o\(tl\<n 

Here Fek, (2, -q), ce, (z, -q) are the known Mathieu functions [ll], Y,,, are 
coefficients of the expansion of the function w* (x, k) in Fourier series in periodic 
Mathieu functions 

w* (x, A) = i rm ce, (rl, - 4) ( q = arc co9 5, q=Lha (1.4) 
-0 1 

We consider a plate whose edges are free. Then the deflection w* (2, A) should 
satisfy the conditions 

d2W* -- 
ax2 v,a=w* = 0 SW* 

9 - - a= (1 - vo) s = 0 
ax3 

for x=+1 (1.5) 

(Vs is the plate Poisson’s ratio). 
The solution of the first equation in (1.2) is written as 

w* (z, A) = Wl (z, A) + wo (2, A) (1.6) 

where w1 (z, h) is a particular solution of the inhomogeneous equation and ~0 (z, h) 

is the general solution of the homogeneous equation. 
We define the function ws (2, A,) so that the conditions 

d%, d2w1 -- 
dd 

v,h2wo = VJb2Wl - yj-Y& 

dswo d3w1 _-(2_vo)h”* =(2-vY,)h2+5--J7 
d9 

for z = f 1 

would be satisfied. This function is found by elementary means after which the solution 
W, (z, h) is found, 

Let us define the solution W, (z, h) by the conditions 

WI (2, A) = saw, I dx2 = 0 for x = + 1 (1.7) 

Then the function w* (x, h) defined by (1.6) will satisfy the conditions (1.5). 
Henceforth, we shall consider that the solution ws is known. The problem is to find 

the function w1 (x, h) satisfying the system (1.2) and the boundary conditions (1.7). 

2, Let G (x, E) be the Green’s function of the boundary value problem 

day -- 
dzl 

2h2 d2y -=o, y(i:l)=y”(*l)=o ax2 

Such function can easily be constructed and has the form 

G (x, E) = + { 
1-&-[~-E[I -&shJf%I s-El-t (2.1) 

ch f/Zh(xfQ-ch2 fF_hch -fTh(x--5) 

J6hsh2 v/hh 1 

By using the Green’s function (2. l), we represent the first equation in (1.2) as an equi- 
valent integral relation 
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WI (x9 9 = Ic, ] G (2, E) k* (E, A) - r* (E, h)] dg - 
-1 

I4 .‘r G (x, E) WI (E, A) dE (k,, = ~-1) 
-1 

(2.2) 

Representing the function w1 (5, I,) as the expansion (1.4) and using the solution (1.3) 

corresponding to this expansion, we obtain from (2.2) 

(2.3) 

1 

s G (x, E) 
-1 

A4 *a0 Trn 1 G(x,E) cem(t9-!7)dE+f(Y) 
-1 

f(q) =ko 1 Wd)g*W)dE 
-1 

t = arc cos E, q = arc cos z, k, = Ek, / (1 - 19) 

After multiplying (2.3) by cek (q, -q) and subsequent integration over the interval 

(0, 4, we find 

nkrk = i TP”Trn i- i K!im’~m f ak 
m=O m=a 

(2.4) 

h3 = n, xh = IC 12, k > 1) 

The matrix coefficients and free terms in the infinite system obtained are found by 

means of the formulas 
, x 

Tf,m) = k Fekm to* - q) (2.5) 
l Fek, (0, - q) \cek(%-q)drl i GhE) Ce$;;tl,“‘-dE 

0 -1 

KLrn) = - h4 j cek (q, - q) dq j- G (2, E) ce, (t, - q) dE 
0 -1 

ak = S 1 cek (% - C7> d’l f, G ($1 t) g* (E, A) @ 
0 

(E = cost, 2 = cos q) 

We represent the Green’s function (2.1) as a uniformly convergent bilinear expansion 
in the products of eigenfunctions of the self-adjoint boundary value problem 

2ha 01% d4!1 -- 
dx4 dxa Py = 0, Ykk~l=Y”(Ifi1)=0 

The required expansion is 

OD 
G (GE) - 2 

sin pzkx sin pzkt 
+i 

‘OS ~ak+lzCos&3ktl 4 (2.6) 

k=l hk k=O 4ktl 
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where the eigenvalues pkare determined by the formula 

k = P+ + 2h2pka, pr=+k @hiI 

The expansion (2.6) will be used to simplify the matrix coefficients and free members 
in the system (2.4). 

3, The representation (2.6) permits obtaining an expansion of the function G (z, E) 
in a series of Chebyshev polynomials 

cm al 

G (x, E) = 2 2 UijTi (3) Tj (E), T, (z) = COS (TZ arc COS Z) (3.1) 
i=Oj=O 

We find the coefficients aij using the Fourier formulas from the theory of orthogonal 
functions. After some transformations we obtain 

m 

a00 = 4 Yl 
k=o 

ii-& Jo (PZ/~+I) Jo @a+l) 

usno = ao zn = .+ i &Jo (Pwisl) J, (pa+l) 
k=O 

a 2m 2n = (- yrntn i & Jzm hc+1) Java @w+l) 
k=o 

a2m+l2n+l = 
(- l)m+n i 1 

4 - Jzrn+, bzk) Jm+, (Pzk) 
k=l I”2k 

These series converge uniformly in the subscripts m and n since 1 J, (x) 1 < 1 for all 

a:and n,and pk- (Vznkj4 as k --t oo. 
The following assertion is valid: the coefficients u,, satisfy the inequalities 

Iurnnl~&9 l”mnI<&, lUmnl\< ‘(mm2ii n, (3.2) 

(C = con&, m,n>22) 

For the proof we use the recurrence relation. from Bessel function theory (z is real) 

J, (z) = 5 [J,,, (4 + J,_, 041 
It follows from (3.3) that 

I 

_H_ 
n ’ n>i 

I J, (4 I G 4 $J 
-- 3 n2 9 n>,z 

Let us consider the series (Y > 0) 

Applying the Cauchy inequality, we find 

b2 mn < K% 

(3.3) 

(3.4) 

(3.5) 

x1 = 5 J,2 (pk) pis/‘-2v, 
m 

zz = 2 Jn2 (Pk) i$‘4+2v 
k=l k=l 
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For the series in the right side in (3.5) we obtain the following estimates by using the 
inequalities (3.4) : 

k=l 

where the quantities clz (I., Y) and C$ (h, Y) decrease with the increase in the parameter 

1. The proof of the convergence of the last series follows from the inequality which is 

valid for large k 

$ (x;)&[ 

x/2 

J0(knsin1)cosZntdt<-$ IJo(krcsint)Idt< 
5 

0 0 
ni2 

+(jk+Glisyrlr&)+ 
(Ko, KI = const) 

Thus, the inequality 

(n > 1) 

follows from (3.5), and the validity of the assertion (3.2) results. 

The inequalities (3.2) permit establishment of the uniform and absolute convergence 
of the series (3.1). In fact, if m > n, then the second inequality in (3.2) results from 
the first one. Therefore, it can be considered that 

I amn 1 < C I man for m>n 

1 amn 1 < Cln2m for n>m 

Furthermore, taking account of the inequalities (3.2), we have 

zcr, [c+Ini+O($)]i-~<M 
i=l 

(C is the Euler constant). 
After these preliminary results, it is possible to proceed to the simplification of the 

matrix coefficients and free terms in the system of equations (2,4). 
Substitution of the expansion (3.1) in the first two formulas in (2.5) results in the for- 

mulas 

j$m'= - h4r( 2 niCyQjm)aij 

i=Oj=O 

oil 
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The prime at the summation means that members whose denominators vanish are 

omitted. &(mj and &.@) are coefficients of the expansion of periodic Mathieu func- 

tions in Fourier series in a trigonometric function system [IA]. 
The free members of the infinite system (2.4) are computed by the formulas 

1 

al = s .Ef* (E, A) cc@ -$- (21 + 1) Ed5 
-1 

4, Let us turn to an investigation of the infinite system (2.4). We write it in the form 
of the operator equation 

z=Aa:+a (4 9 

5 = (yo, yl, . . ., ym, . * . >T, a = zk-l (a;;, a,, * . *, a,, . . .F 

A = rcnk-1 [(Tpq + (K,ql 

where (Us) is the symbol of an infinite order matix corresponding to the system of 

equations (2.4). and T is the transpose symbol. 
The following theorem holds: the system of equations (4.1) has the unique solution 

XE P. 
First, let us show that the operator A is completely continuous in the Hilbert space 12. 

To do this it is sufficient to prove the convergence of the series 

jj 1 zy’ I”, 2 f drn)p (4.2) 
m, k=o m, k=o 

Using asymptotic formulas for the coefficients A,(“), B,tn) 

A’? n 2r 

Bfnt 
n-sr 

A(“) 
n+2r (- 1)’ n! 

Bent 
n+2r 

- rl (n + r)! 

as well as the inequalities (3.2), we find 

(4.3) 

It can be obtained from the theory of expansions of the modified Mathieu functions 
Fek, (5, -q) that as n -+ 00 the following asymptotic formula is valid 
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I Fe& (0, - q) 

Fek,,, (0, - q) I \(6m 

where 6 is some constant independent of m. The inequality (4.3) together with thelast 
inequality permit us to establish that 

IT(km) (m,k)-+m (4.4) 

Convergence of the first series in (4.2) follows immediately from (4.4), 
For the members of the second series we have 

v@‘I G x4 ““ka”” 15 [ * _ (f+ @2 
+ i _ (f_ m)2 ] (1 + i)-‘l< h4 s 

j==o 

Therefore, the second series in (4.2) also converges. It follows from the fact that the 
series (4,2) converge, that the operator A. generated by the system (2.4) is completely 
continuous in the number space la. Moreover, we find from (3.6), as k + co , that 

1 ak 1 ;\< const,lk* 

For the system (4.1) with operator A completely continuous in la and free members 
belonging to la, the Hilbert alternative 1.123 is valid, from which the unique solvability 
of the infinite system is easily proved by relying on the unique solvable of the initial 
boundary value problem, Such an infinite system of linear algebraic equations can be 
solved by the method of reduction (truncation). Hence, the solutions of truncated systems 
tend to the exact solution of an infinite system as their order increases. 

In conclusion, let us note that the method proposed for the solution of a problem of a 
strip plate can be extended to the I. Ia. Shtaerman problem for a combined foundation 
as well as to an elastic half-space in the case of systems of strip plates. 
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UX 539.3 

ON THE DEFORh4ATIm OF AN ELASTIC WEDGE PLATE REINFORCED BY A 

VARIABLE 8TIPPNESS BAR AND A METHOD OF SOLVING MIXED PXWLEMS 

PMM Vol. 40, NS 2, 1976, pp. 306-316 
B. M. NULLER 
(Leningrad) 

(Received January 20, 1975) 

The plane state of stress of an infinite elastic wedge reinforced by an infinite 
elastic bar along the bisectrix, whose stiffness varies as r”’ (r is the distance from 
the wedge apex), is considered. The problem is reduced to a first order difference 

equation for the displacement o and is solved in closed form. The solution re- 
tains its meaning for w = k 05, when the mentioned fundamental problem for 
the reinforced domain goes over into a mixed problem for the homogeneous do- 
main, Therefore, the method pro-d, which is applicable also to problems for 

rectangular, cylindrical and conical domains reinforced by bars, plates, circular 
slabs and shells of variable stiffness, is more general in specific respects than the 
Wiener-Hopf method. 

Homogeneous [l-4] and inhomogeneous [5, S] problems for an elastic wedge 
reinforced by constant stiffness bars have been studied earlier by using difference 
equations. Corresponding heat conduction and electromagnetic wave diffraction 
problems on a wedge have been solved in [7, 83, etc. 

1. Let an elastic wedge-shaped plate 0 < r < 00, -a << 8 < a of thickness h 
be welded completely along the bisectrix to an infinite elastic bar. The bar tensile and 
bending stiffnesses 201 (r) in the r, 8 plane are expressed, respectively, by the equa- 

tiOilS 
& (F) = fir + yr’+O (1.1) 

D, (r) = p?-S + yfl+o (1.2) 

where p > 0, y > 0 and o are any real numbers, where different numbers in (1.1) and 

(1.2) can be denoted by identical letters. The magnitudes of forces applied to the wedge 
or bar at the points r = 1, will be denoted by the letters M, N, s with subscripts s, 
while the subscripts 0 and 00 correspond to points of the wedge r == 0 and of the bar 
r = cxz (see Fig. 1; the notation for the forces applied at the points r = 1, and r = 00 


